Send MIDI Data via RS-232

Overview

Most MIDI messages are sequences of 2-3 8-bit bytes. The largest hurdle when integrating the
DecaBox with Crestron / AMX / Control4 equipment is properly formatting these messages. An
excellent, detailed description of their syntax can be found here:

* https://www.midi.org/specifications/item/table-1-summary-of-midi-message

* https://www.midi.org/specifications-old/item/table-3-control-change-messages-data-bytes-2

In our documentation, we use this format to describe raw byte data: $AA $BB $cC . The $ sign
signifies hexadecimal values, which means that AA, BB, etc are in the range [00 FF] hex, which
maps to [0 255] decimal. Spaces are inserted between bytes in this documentation merely for
convenience in reading.

MIDI messages are zero based and generally bytes 2 and 3 have a maximum value of $7F, or 127
decimal. A simple online decimal <-> hex converter can be found at

https://www.binaryhexconverter.com/decimal-to-hex-converter

Here are sample MIDI messages:

$90 $01 $7F Note on, MIDI channel 1, note #2, full velocity $8F $07 $40 Note off, MIDI
channel 16, note #8, 50% velocity$Bl $03 $10 MIDI CC #4 (foot controller), ~30% intensity,

MIDI channel 2
$FO $01 $02 $03 $04 $05 $06 $F7 A short MIDI sysex message. These are framed by [FO F7] always.

(The MIDI channel is the lower nibble of the first byte. That is, $BX means MIDI CC message and X can
vary between [$0 $F]. Hex $0 means MIDI channel 1, $1 means MIDI channel 2, etc. $F is channel 16.)

\XFO\x01\x02\x03\x04\x05\x06\xF7
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Sending MIDI to Data to the Decabox

Once the 2-3 byte MIDI messages have been correctly formatted, the next step is to send them to the
DecaBox. That syntax looks like this:

M $AA $BB $CC...$FF[cr]

- The command starts with a capital M.

- It is followed by single space character ' '.- Then hex values written as strings in ASCII
format.

- Command terminates with a carriage return.

Examples, using the same commands listed above:

M $90 $01 $7F([cr] Note on, MIDI channel 1, note #2, full velocity M $8F $07 $40[cr] Note
off, MIDI channel 16, note #8, 50% velocityM $B1 $03 $10[cr] MIDI CC #4 (foot controller),
~30% intensity, MIDI channel 2M $FO $01 $02 $03 $04 $05 $06 $F7[cr] A short MIDI sysex
message. These are framed by [FO F7] always.

Each of these commands are sent as ASCII STRINGS, whose length varies between 13 and ~30

characters.

Screenshot. Green is text sent to the box, yellow are replies.



RealTerm: Serial Capture Program 3.0.1.44

M $98 522 5130

Chracters: 140

M 598 522 5130

Parse & Send MIDICk
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MIDI send completel;

Main loop display updatelr
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Send chars as is. Backslash sequences (python style) can be used (unless Literal is checked) eg THISIS NEWLINE Chars114  CPS:0 Port: 2 9600 8N1 MNone
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