Send MIDI Data via RS-232

Overview

Most MIDI messages are sequences of 2-3 8-bit bytes. The largest hurdle when integrating the
DecaBox with Crestron / AMX / Control4 equipment is properly formatting these messages. An
excellent, detailed description of their syntax can be found here:

* https://www.midi.org/specifications/item/table-1-summary-of-midi-message

* https://www.midi.org/specifications-old/item/table-3-control-change-messages-data-bytes-2

In our documentation, we use this format to describe raw byte data: $AA $BB $cC . The $ sign
signifies hexadecimal values, which means that AA, BB, etc are in the range [00 FF] hex, which
maps to [0 255] decimal. Spaces are inserted between bytes in this documentation merely for
convenience in reading.

MIDI messages are zero based and generally bytes 2 and 3 have a maximum value of $7F, or 127
decimal. A simple online decimal <-> hex converter can be found at

https://www.binaryhexconverter.com/decimal-to-hex-converter

Here are sample MIDI messages:

$90 $01 $7F Note on, MIDI channel 1, note #2, full velocity $8F $07 $40 Note off, MIDI
channel 16, note #8, 50% velocity$Bl $03 $10 MIDI CC #4 (foot controller), ~30% intensity,

MIDI channel 2
$FO $01 $02 $03 $04 $05 $06 $F7 A short MIDI sysex message. These are framed by [FO F7] always.

(The MIDI channel is the lower nibble of the first byte. That is, $BX means MIDI CC message and X can
vary between [$0 $F]. Hex $0 means MIDI channel 1, $1 means MIDI channel 2, etc. $F is channel 16.)

\XFO\x01\x02\x03\x04\x05\x06\xF7

https://www.midi.org/specifications/item/table-1-summary-of-midi-message
https://www.midi.org/specifications/item/table-1-summary-of-midi-message
https://www.midi.org/specifications-old/item/table-3-control-change-messages-data-bytes-2
https://www.midi.org/specifications-old/item/table-3-control-change-messages-data-bytes-2
https://www.binaryhexconverter.com/decimal-to-hex-converter
https://www.binaryhexconverter.com/decimal-to-hex-converter

Sending MIDI to Data to the Decabox

Once the 2-3 byte MIDI messages have been correctly formatted, the next step is to send them to the
DecaBox. That syntax looks like this:

M $AA $BB $CC...$FF[cr]

- The command starts with a capital M.

- It is followed by single space character ' '.- Then hex values written as strings in ASCII
format.

- Command terminates with a carriage return.

Examples, using the same commands listed above:

M $90 $01 $7F([cr] Note on, MIDI channel 1, note #2, full velocity M $8F $07 $40[cr] Note
off, MIDI channel 16, note #8, 50% velocityM $B1 $03 $10[cr] MIDI CC #4 (foot controller),
~30% intensity, MIDI channel 2M $FO $01 $02 $03 $04 $05 $06 $F7[cr] A short MIDI sysex
message. These are framed by [FO F7] always.

Each of these commands are sent as ASCII STRINGS, whose length varies between 13 and ~30

characters.

Screenshot. Green is text sent to the box, yellow are replies.

RealTerm: Serial Capture Program 3.0.1.44

M $98 522 5130

Chracters: 140

M 598 522 5130

Parse & Send MIDICk

M S9ar:

M 52

M = 5130

MIDI send completel;

Main loop display updatelr

Display | Port | Capture | Pins | Send | Echo Port |12C | I2C-2 | I2CMem | I2CMisc | Misc \nl[Clear|[Freeze|(?]

] . Status
M $98 $22 $13 - | Numbers| | as Hex | |as Ascr| [¥ +CRC [[] Hex | Connected

$CR +LF
~ | Numbers | | as Hex | | as ASCIT| SMBUS 8 _|RxD(2)
™D (3)

I _ \n N
= . . CTS (8)
0 | [*C| |LF| Repeats 1 & Strip Spaces Literal Before [After
10| [rC] |LF] rep - P >pa _Ipep ()
Dump File to Port - _ | DSR.(6)
%%APPDATA%\Realterm\send. txt - | | ‘ send Fie | ‘ X stop ‘ Delays -2 3 0) _ |Ring (9)
T , = _ | BREAK
Repeats 1 3 100 = _ | Error USB

Send chars as is. Backslash sequences (python style) can be used (unless Literal is checked) eg THISIS NEWLINE Chars114 CPS:0 Port: 2 9600 8N1 MNone

Revision #4
Created Sun, Nov 10, 2019 2:34 AM by ESINC
Updated Sun, Nov 10, 2019 2:50 AM by ESINC

http://67.205.146.177/uploads/images/gallery/2019-11/midi-send.png
http://67.205.146.177/user/1
http://67.205.146.177/user/1

