
Build MIDI Messages One Byte at a Time‌
Most MIDI messages are sequences of 2 or 3 8-bit bytes. The largest hurdle when integrating the
DecaBox with Crestron / AMX / Control4 equipment is properly formatting these messages. An
excellent, detailed description of their syntax can be found here:

​https://www.midi.org/specifications/item/table-1-summary-of-midi-message​
​https://www.midi.org/specifications-old/item/table-3-control-change-messages-data-bytes-2​

MIDI messages are zero based and generally bytes 2 and 3 have a maximum value of $7F, or 127
decimal. A simple online decimal <-> hex converter can be found at
https://www.binaryhexconverter.com/decimal-to-hex-converter​

Here are sample MIDI messages:

(The MIDI channel is the lower nibble of the first byte. That is, $BX means MIDI CC message and X can
vary between [$0 $F]. Hex $0 means MIDI channel 1, $1 means MIDI channel 2, etc. $F is channel 16.)

Command Formatting &
Syntax

In our documentation, we use this format to describe raw byte data: $AA $BB $CC . The $ sign
signifies hexadecimal values, which means that AA, BB, etc are in the range [00 FF] hex, which
maps to [0 255] decimal. Spaces are inserted between bytes in this documentation merely for
convenience in reading.

$90 $01 $7F Note on, MIDI channel 1, note #2, full velocity $8F $07 $40 Note off, MIDI

channel 16, note #8, 50% velocity

$B1 $03 $10 MIDI CC #4 (foot controller), ~30% intensity, MIDI channel 2

It’s vital to note that these MIDI messages must be transmitted as raw hex bytes rather than
a group of ASCII characters. Occasionally we entertain tech support calls where we learn that a
control system is sending out a nine-byte string instead. Obviously, this won't generate the
expected results.

https://www.midi.org/specifications/item/table-1-summary-of-midi-message
https://www.midi.org/specifications/item/table-1-summary-of-midi-message
https://www.midi.org/specifications-old/item/table-3-control-change-messages-data-bytes-2
https://www.midi.org/specifications-old/item/table-3-control-change-messages-data-bytes-2
https://www.binaryhexconverter.com/decimal-to-hex-converter
https://www.binaryhexconverter.com/decimal-to-hex-converter

On most control platforms, it's necessary to 'escape' these byte values so that they are transmitted
as raw data, rather than as a string of ASCII characters. For example, Crestron uses the characters \x
to signify a single byte:

\xAA\xBB\xCC

\x90\x01\x7F <--- Example 1

\x8F\x07\x40 <--- Example 2

\xB1\x03\x14 <--- Example 3

MIDI SYSEX messages can be nearly any length but are framed by the bytes $F0 and $F7. An example
message might look like this in Crestron format:

\xF0\x01\x02\x03\x04\x05\x06\xF7

‌

"$" + "9" + "0" + "$" + "0" + "1" + "$" + "7" + "F" is not the same as $90 $01 $7F.

One way to quickly troubleshoot this system is to connect a MIDI cable from the DecaBox’s
‘MIDI Out’ to ‘MIDI In’ connectors. This gives loopback on the serial side and makes it easy to
confirm that the correct messages are being sent. We've had more than a few support calls
where what a control system claimed to be sending, and what was actually going out the door,
were wildly different. At least one of those calls uncovered serious system-level bugs, which
led to a massive firmware revision by a well-known equipment manufacturer who shall not be
named.

Revision #10
Created Tue, Oct 29, 2019 6:56 PM by ESINC
Updated Thu, Apr 16, 2020 1:48 PM by ESINC

http://67.205.146.177/user/1
http://67.205.146.177/user/1

